首页> 外文OA文献 >Confluent and Double-Confluent Heun Equations: Convergence of Solutions in Series of Coulomb Wavefunctions
【2h】

Confluent and Double-Confluent Heun Equations: Convergence of Solutions in Series of Coulomb Wavefunctions

机译:汇合和双汇的Heun方程:解的收敛性   系列库仑波函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Leaver solutions in series of Coulomb wave functions for the confluentHeun equation (CHE) are given by two-sided infinite series, that is, by serieswhere the summation index $n$ runs from minus to plus infinity [E. W. Leaver,J. Math. Phys. 27, 1238 (1986)]. First we show that, in contrast to theD'Alembert test, under certain conditions the Raabe test assures that thedomains of convergence of these solutions include an additional singular point.Further, by using a limit proposed by Leaver, we obtain solutions for thedouble-confluent Heun equation (DCHE). In addition, we get solutions for theso-called Whittaker-Ince limit of the CHE and DCHE. For these four equations,new solutions are generated by transformations of variables. In the secondplace, for each of the above equations we obtain one-sided series solutions($n\geq 0$) by truncating on the left the two-sided series. Finally we discussthe time dependence of the Klein-Gordon equation in two cosmological models andthe spatial dependence of the Schr\"{o}dinger equation to a family ofquasi-exactly solvable potentials. For a subfamily of these potentials weobtain infinite-series solutions which converge and are bounded for all valuesof the independent variable, in opposition to a common belief}.
机译:汇合的Heun方程(CHE)的库仑波函数级数的Leaves解由两侧无穷级数给出,也就是说,总和指数$ n $从负到正无穷大[E. W·莱弗,J。数学。物理27,1238(1986)]。首先,我们证明与D'Alembert检验相反,在某些条件下Raabe检验确保这些解决方案的收敛域包含一个额外的奇异点。此外,通过使用Leaver提出的一个极限,我们获得了双收敛的解决方案Heun方程(DCHE)。此外,我们获得了所谓的CHE和DCHE的Whittaker-Ince限制的解决方案。对于这四个方程,通过变量转换产生新的解。其次,对于上述每个方程式,我们通过在左侧舍入两侧的级数来获得一侧的级数解($ n \ geq 0 $)。最后,我们讨论了两个宇宙学模型中Klein-Gordon方程的时间相关性以及Schr \“ {o} dinger方程对一类准可解势的空间依赖性。对于这些势的一个子族,我们获得了收敛的无限级数解。并与自变量的所有值有界,与一个共同的信念相反}。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号